
J R KERR A U T O M A T I O N ENGINEERING
www.jrkerr.com

 NMC Simple Sequencer
 Stand-a lone Cont ro l le r

1.0 Overview

The Simple Sequencer is a programmable, stand-alone controller for NMC control modules including
the PIC-SERVO, PIC-STEP and the PIC-I/O. Sequences of commands are programmed into non-
volatile memory using an intuitive Windows interface. No programming experience is required for
creating command sequences. Command sequences can be created, edited, downloaded and even
monitored from the same simple Windows application. When completed, your program will run
automatically on power-up.

Simple Sequencer programs are simply lists of commands to be executed by NMC control modules
or by the Simple Sequencer itself. Program flow can be controlled by branching on switch inputs,
motor operating conditions, or on input from a terminal or another computer.

The Simple Sequencer programming application runs under Windows 95/98/NT. One display
window gives you complete control over programming, editing and interactive running of your
programs. Programming consists the following steps:

1. Select an NMC module from the module list
2. Select a command from the command list
3. Enter the command parameters as prompted
4. Add the command to the program listing

Once your program is complete, click on the “Load” button, and you are ready to run your program,
either interactively or stand-alone.

The Simple Sequencer has the following features:
• Plugs into the existing socket on your Z232-485 converter board
• Programs execute automatically on power-up
• RS485 communication to NMC control modules
• RS232 communications with external computers or terminals
• Programs may include branching, subroutines, and automatic monitoring of error conditions
• Programs of up to 2000 commands can be stored

The Simple Sequencer is designed to be an easy-to-use, programmable controller for NMC control
modules. However, it does have some limitations on the complexity of programs which can be
written. For applications requiring more complex control, including symbolic variables, math
functions, or precise coordination of several modules, you should explore the use of our DOS or
Windows programming tools for PC based control, or the use of the C programmable Core Module
processing cards from Z-World Engineering.

Caution
The Simple Sequencer does not incorporate safeguards for fail-safe operation. This board should not be used in
any device in which its failure could cause injury, loss of life, or property damage. J.R. Kerr makes no warranties

whatsoever regarding the performance, operation, or fitness of this board for any particular purpose.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 2

2.0 Quick Start

Hardware setup
1. You will need the following items:

• Simple Sequencer board
• Z232-485 Serial Port Converter board
• One or more NMC control modules (PIC-SERVO, PIC-STEP or PIC-I/O)
• One NMC communications cable per NMC controller (10 wire ribbon cable)
• RS232 cable (DB9 male/DB9 female, straight)
• Logic power supply (7.5 - 12vdc, 500 ma) with Waldom 2-pin header connector.
• Windows Simple Sequencer programming software (available from www.jrkerr.com)
• PC running Windows 95/98/NT

2. Plug the Simple Sequencer into the 40 pin socket on the Z232-485. The Simple Sequencer board
should be overlapping the center of the Z232-485 board.

3. Interconnect your PIC-SERVO, PIC-STEP or PIC-I/O boards with the Z232-485 board with the 10
wire ribbon cables and set jumpers as shown. (See Figure 1 below.)

4. On the Z232-485 board, move jumpers JP3 and JP4 both to their 2-3 positions (jumpers towards
the center of the board).

5. Connect the RS232 port of the Z232-485 board to a free PC COM port.
6. Connect the logic supply to connector JP6 on the Z232-485 board, but do not turn on.

Programming
1. Install the Simple Sequencer programming application software by copying all of the files

(including the Examples folder) on the distribution disk to a single folder on your hard drive.
(No formal installation process is necessary.)

2. Start the Simple Sequencer application software. Select the COM port when prompted.
3. Turn on the logic power supply. The Simple Sequencer program will display the message

“Simple Sequencer Detected”, followed by a message with the number of NMC modules
detected. The module list on the left side of the display should list all modules you have
interconnected.

4. Create the following simple program:
a. Click on the “Master” module in the module list on the left.
b. Select “NmcInit” from the Master Commands.
c. Click on the “Add” button at the bottom of the Build a Command panel.

This will add the first line to your program.
d. Now select the “Print” command from the Master Commands list.

Enter the text “Hi there.” in the Print Characters edit box.
e. Again, click on the “Add” button.
f. Select “StopProgram” from the Master Commands list. Click on “Add”.

This completes your program.
5. Click the “Save” button underneath the Program Listing to save the program. (You can use the

name “test.ssq”.)
6. Click the “Load” button to download the program to the Simple Sequencer.
7. Before running your program, click on the “Terminal” button to monitor what gets printed by

your program. (Move the terminal window to one side if necessary.)
8. Click the “Run” in the Program Execution panel. “Hi there.” will appear in the terminal window.
9. Note that if you turn off the logic power and start up a generic terminal program (such as

Hyperterminal with settings 19200 baud, 1 start bit, 1 stop bit, no handshaking), the text “Hi

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 3

there.” should appear about 1 second after turning the logic power back on. Please read the rest
of this manual to discover all the other things you can do besides sending greetings.

JP6

JP7

JP8
JP3

JP1

JP2

Z232-485 Converter

JP5

JP3 JP4
JP2

DB9

10 wire
 ribbon
 cable

JP1
 Straight M/F
to PC COM Port

JP6

JP7

JP8
JP3

JP1

JP2

JP6

JP7

JP8
JP3

JP1

JP2

NMC modules

Multiple Module Configuration

1 1

JP6 GND+9v

Jumpers
Installed on
last module

No Jumpers

No Jumpers

Simple
Sequencer

Fi
gure 1 - Interconnection diagram.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 4

3.0 Simple Sequencer Programming Screen

Figure 2 - Simple Sequencer Programming Screen.
Title Bar: Displays the file name of the program you are working on.

Module List: Displays the list of NMC modules. This module list is either detected automatically on
power-up, loaded when you open an existing program, or created when you left-click on this list to
edit it. The first module (Master) refers to the Simple Sequencer itself.

Clicking on a module will enable the appropriate Command List below. Double-clicking on a
module will display its current status.

Command Lists: Master, Servo, Stepper or I/O Command lists list the specific commands for each
type of module. The specific lists are enabled by clicking on a module in the Module List above.

Build a Command Panel: This is where you enter the specific data for a command. The top part of
this panel displays information generic to all commands. The lower panel will display edit boxes,
check boxes or other controls for entering data specific to a particular type of command.

Label: Each command may optionally have a label. Enter a unique label here to be
able to jump to this command using a GoTo or Call command.

Module Address: Displays the address of the module associated with a command. This
value is automatically filled in when you click on a module in the Module List or
when you click on a command in the program listing.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 5

Command Class: Displays the type of command. This value is automatically filled
in when you click on a module in the Module List or when you click on a command in
the program listing.

Command name: Displays command name. This value is automatically filled in when you
click on a module in the Module List or when you click on a command in the program
listing.

Comment Button: The Comment button inserts the text entered into the comment window
next to it as a comment line in your program listing. When displayed in the program
listing, comments are always preceded by a ‘;’. Comments have no effect on program
execution, but are useful for documenting the operation of your program.

Add Button: The Add button adds a new command to your program listing. The new command is
added above the highlighted program line.

Change Button: This button allows you to edit the parameters of an existing command or comment
line.

Execute Now Button: This button will cause the command you have just created to be executed
immediately by target module. Note that not all commands can be executed immediately.

Program Listing: The program listing displays the command sequence to be executed. The first part
of a command listing is the label. Next is the address of the target module for that command. Next
is brief command description. Clicking on a command will display the full details of that command in
the “Build a Command” panel.

At the top of the Program Listing are several indicators: Loaded/Not Loaded indicates whether the
current program has been downloaded into the Simple Sequencer, Saved/Not Saved indicates
whether the program as been saved to disk or not, and the program running indicator light lets you
know if the program is running (green) or stopped (red).

Open Button: Opens a Simple Sequencer program saved on disk.

Save button: Saves the current program to disk.

Copy Button: Copies selected program lines into a copy buffer. Several lines can be selected by
either clicking on a line and dragging the cursor down over additional lines, or by clicking on one line
and then shift-clicking on another line to select all the lines in-between.

Cut Button: Similar to the Copy button, except that it deletes the lines from your program after
copying them to the copy buffer.

Paste Button: Pastes the program lines in the copy buffer into the location just above the highlighted
program line. The program lines are left in the copy buffer and may be pasted again.

Delete Button: Deletes a single program line permanently.

Clear All Button: Clears your entire program. A prompt will appear to verify before your program is
actually cleared.

Program Execution Panel: This panel contains controls for downloading and debugging your
program. This panel is disabled if you are not working with your Simple Sequencer on-line.

Load Button: Downloads your program into the Simple Sequencer non-volatile memory.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 6

Verify Button: Reads the Simple Sequencer memory and compares it to the current
program listing. This is useful for verifying which program is actually loaded into the
non-volatile memory.

Run Button: Begins or resumes execution of your program. If you want to make sure
that you are running from the beginning, click on the Restart button first. As the program
runs, the program line being executed will automatically be highlighted.

Stop Button: Halts execution of your program. Note that if a PIC-SERVO module is in
the middle of executing a motion, it will continue to execute that motion even
though the program is stopped!

Step Button: Causes just the current program line to be executed and the next line will be
automatically be highlighted. Note that the current program line is the determined by the
Simple Sequencer’s internal program pointer.

Break Button: Sets a program breakpoint at the highlighted line, indicated by a ‘n’ at the
beginning of the program line. When the program encounters this line, it will stop the
program before executing this line. Clicking on Run or Step will cause the program to
continue executing past this line. Highlighting a line with a breakpoint and then clicking
on Break will clear the break point. Only one breakpoint can be set.

Restart Button: Sets the Simple Sequencer’s internal program pointer to the beginning of
the program. Use this button to restart the program after a “StopProgram” command, or
to restart in the middle of program execution.

Reset Button: Resets the Simple Sequencer and the connected modules to their power-up
state. This button can also be used as a stop button to halt any motion in
progress (although a hardwired emergency stop circuit should also be used).

Terminal Button: This button pops up a simple terminal window for sending and receiving characters
to and from the Simple Sequencer’s RS232 port..

Communications Button: Allows you to change the COM port you are using. If you are running off-
line (that is, your Simple Sequencer is not connected to your PC), you can choose an “Offline”
option rather than COM1, COM2, COM3 or COM4.

Help Button: Displays on-line help. (Requires the Acrobat Reader)

Exit Button: Terminates the Windows Simple Sequencer interface program. Note that terminating
this program does not terminate the execution of the program which may be running on the Simple
Sequencer itself.

4.0 Creating Programs

4.1 Creating a Module List
Before creating a program a program, you must first have a list of modules to work with. A module
list can be created in one of three ways:

Working On-line with Modules Connected
If you have your PC’s COM port connected to the Simple Sequencer with NMC modules attached
(see Figure 1), the Simple Sequencer interface program will automatically detect how many modules
are connected as well as the types of modules, and a module list will be created. In the list, the

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 7

Simple Sequencer itself appears as the Master module (address 0). The module furthest from the
Simple Sequencer will be assigned address 1, with addresses increasing from there.

Creating a New Module List
If you are working off-line, or are writing a program for modules not currently connected, you can
create a new module list by clicking with the right mouse button on the Module List. This will pop
up a menu with options for clearing the list, adding modules, or using the modules automatically
detected on-line. Modules must be added in the order in which they will be interconnected, with the
first module being the furthest from the Simple Sequencer. When you save your program, this
module list will be saved as part of the program.

Using a Program’s Module List
When you open a previously written program, the module list stored as part of that program will be
displayed in the Module List window.

If you edit the module list or open a program such that the module list does not match the modules
connected on-line, a warning message will be displayed, and you will not be allowed to actually run
your program.

CAUTION: If you do attempt to run a program stand-alone which does not have the appropriate
modules connected and in the correct order, the results will be unpredictable and potentially
hazardous. You should always be very careful when testing new programs, or when operating the
Simple Sequencer after you have adjusted any of the cabling.

4.2 Creating Program Command Sequences
Creating program command sequences consist of the following three steps:

1. Select a module to send a command. Most commands will be sent to a PIC-SERVO, PIC-
STEP or a PIC-I/O module. Commands controlling the program initialization or program
flow, however, will be sent to the Master module (the Simple Sequencer itself.). Once a
module is selected, the appropriate command list below will be enabled.

2. Select a command from the command list. Once a command is selected, places to enter
command specific parameters will appear in the lower area of the “Build a Command” panel.
Details of all of the commands are in Section 6.0 (Programming Reference) below.

3. Fill in the command specific data. This data is entered into the “Build a Command” area.
Note that some commands do not require any specific data to be entered. If you want your
program to be able to jump to this specific command, enter a unique label at the top of this
panel.

Once the command data and optional label have been entered click on the Add button to add the
command to your program. The command will be added just above the highlighted program line.
You can click on any line in the program to move the highlight, and thus control where the next new
line gets added.

4.3 Editing Programs
Changing a Single Command
To change the parameters or label for a single command, first click on the command in the Program
Listing, and the specific details for that command will appear in the “Build a Command” panel.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 8

Change the parameters or label as required. Clicking on the Change button will update the command
with the new parameters.

If you want to change a comment line, clicking on the comment in the Program Listing will display
the comment text in the comment edit box. After modifying the comment, clicking on the change
button below will update the comment.

Rearranging Program Lines
Rearranging program lines can be done with the Copy, Cut and Paste buttons. One or more program
lines can be selected by clicking on a program line and then dragging the cursor over additional
program lines. Alternately, clicking on one program line and then shift-clicking on another program
line will select all lines in-between.

With program lines selected, clicking on the Copy button will copy those lines into an internal copy
buffer, but will not delete them from the Program Listing. Clicking on the Cut button will also copy
the lines, but they will be deleted from the Program Listing.

Once you have some lines in the copy buffer, you can paste them into a new location. Click on the
program line just below where you want the lines inserted, and then click on Paste.

The Delete button will delete just a single highlighted line of your program without affecting the
copy buffer. If you wish to delete several lines, you can select them and then use the Cut button
instead. (Any subsequent Copy or Cut will flush any previous copied lines from the copy buffer.)

The Clear All button will delete everything in the program listing. You will be prompted to verify
before this action is taken.

Saving and Opening Programs
Once you have created a program, you can save it using the Save button. A window will pop up
with a place for you to enter the desired file name. The default extension for Simple Sequencer
programs is ‘.ssq’. If you enter in a file name with no extension, an ‘.ssq’ will be appended
automatically. The module list will also be saved as part of the program.

When you save a program, the indicator above the Program Listing will indicate “Saved”. Any
change to the program or module list will change the indicator to “Not Saved”. If you attempt to
exit without saving your program, you will be prompted with an opportunity to save before exiting.

The Open button is used to open a previously written Simple Sequencer program. If you are
working on-line and the module list for the program does not match the modules detected, the
program will be opened, but you will not be allowed to run the program from this Windows
application.

CAUTION: If you do attempt to run a program stand-alone which does not have the appropriate
modules connected and in the correct order, the results will be unpredictable and potentially
hazardous. You should always be very careful when testing new programs, or when operating the
Simple Sequencer after you have adjusted any of the cabling.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 9

4.4 Testing Individual Commands
It is often handy to be able to check the operation of a particular command or particular command
parameters without having to enter the command into your program. Especially with motion control
programs, you might want to test out positions, velocities or accelerations for your particular
application. The Execute Now button allows you to execute a single command built up in the Build
a Command panel without entering it into your program. The Execute Now option is only available
with certain command for which immediate execution makes sense.

In conjunction with testing individual commands, it is also useful to be able to see the current state of
limit switches, digital I/O lines, or motor positions. Double-clicking on a module in the module list
will pop open a window displaying basic status information for the module. This window must be
closed (with the ‘×’ in the upper right corner) to resume operation. The data displayed is not
dynamically updated while the window is open.

5.0 Running and Debugging Programs

Before testing your program, the Simple Sequencer must be powered up and connected to your PC.
You can verify that the Simple Sequencer has been detected by looking at the Program Execution
panel below the Program Listing. If the panel label reads: “Program Execution (disabled)”, the
Simple Sequencer has not been detected. If this is the case, make sure that the correct COM port
has been selected, and then power-cycle the logic power for the Simple Sequencer. If everything is
connected correctly, the message “Simple Sequencer Detected” will appear, followed by a message
with the number of control modules found.

The RS232 port on the Z232-485 converter board is used by the Simple Sequencer for both
downloading and debugging, and for character I/O with an external computer or terminal. The
Windows programming application gives you the ability to debug and perform terminal character I/O
simultaneously.

5.1 Downloading and Verifying Programs
The Load button is used to download your program into the Simple Sequencer’s non-volatile
memory. This may take several seconds, depending on your program’s size. (Programs download at
about 1000 bytes per second.) When complete, the indicator above the Program Listing will switch
to “Loaded”.

If you wish to verify that the program in non-volatile memory matches the program listing, click on
the verify button. If it matches, the Loaded/Not Loaded indicator will switch to “Loaded”. This is
most useful when you want to see if the loaded program matches one saved on disk.

The non-volatile memory on the Simple Sequencer is rated for 100,000 write cycles. This means
that you can load programs at least 100,000 times. This should not present any problems for normal
use, but you might want to avoid unnecessary clicking of the Load button.

5.2 Stand-alone Operation
Whenever you power-up the Simple Sequencer, it will send a single ‘#’ character out its RS232 port
and then wait for 1 second. If the Windows Simple Sequencer programming application is not
connected and running, the Simple Sequencer will automatically begin execution of program in its
non-volatile memory.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 10

CAUTION: The Simple Sequencer cannot verify that PIC-SERVO, PIC-STEP and PIC-I/O modules
are interconnected in the proper order. You should always verify the proper operation of your
program using the Windows programming application before running your program stand-alone.

If your program contains any print statements or relies on character input to its RS232 port, you can
connect its RS232 port to your PC and run any terminal program set up for 19200 baud, one start
bit, one stop bit, no handshaking. When you first power-up, you will see a ‘#’ character on the
terminal, and the program will begin execution 1 second later.

You can change the RS232 baud rate in your Simple Sequencer program using the “ChangeBaud”
command, but if you do so, you will not be able to run your program interactively through the
Simple Sequencer programming application. Your program will only run stand-alone.

5.3 Running, Stopping and Stepping
With your program downloaded (and with the module list matching the modules detected) you can
run your program interactively. If you want to run your program from the beginning, is always a
good idea to click on the Restart button to insure that the program begins at the top. Clicking on
Run will cause the program to begin execution.

The Windows programming application is constantly polling the Simple Sequencer at a rate of 4
times per second. As your program executes, the line being executed is automatically highlighted.
Because many lines of your program may be executed between polling samples, the highlight may
appear to skip over some lines. Most programs will spend the majority of their time waiting for
some condition (eg, WaitFor move done) to be met. While the program is running, the program
running indicator will be lit green.

When you click on the Stop button, the program will halt execution and the Program Listing
highlight will land on the next instruction to execute. Clicking on Run will resume execution of the
program. Program execution will also halt whenever a “StopProgram” command or a command
with a breakpoint is encountered.

Clicking on Run at a breakpoint will resume program execution. Clicking on Run at a
“StopProgram” command will have no effect. You must click on Restart to reset the program
pointer to the beginning of the program. Clicking Run will then start execution from there.

Clicking on Step will cause just the next line of the program to execute. Normally, the next line to
execute will be the highlighted line. If, however, you have repositioned the highlight by clicking on a
different program line, clicking on Step or Run will still execute from the Simple Sequencer’s
internal program pointer which no longer matches the highlighted line.

If your program uses print commands or relies on RS232 character input, you will want to click on
the Terminal button to pop open a simple terminal window. This window will display characters sent
using Print commands, and can be used to send characters to the Simple Sequencer as well. Note
that the RS232 port is being used simultaneously for character I/O and for monitoring the program’s
execution.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 11

5.4 Using the Breakpoint
The breakpoint is used to automatically stop program execution for debugging purposes. While your
program is stopped, you can click on a program line and then click on the break button. The first
character in the line will be a ‘n’ character to indicate the breakpoint has been set. When the
program comes to a line with a breakpoint, it will halt execution without executing the breakpoint
line. Clicking on Run or Step will resume execution starting with the breakpoint line.

To clear the breakpoint, click on the line with the breakpoint indicator, and then click on the Break
button. The Simple Sequencer only supports one breakpoint. Breakpoints are cleared on power-up,
and so they cannot be used in stand-alone operation.

5.5 Restart vs. Reset
The Restart button is used for setting the Simple Sequencer’s internal program pointer to the
beginning of the program after the program has stopped, and nothing else. The breakpoint is not
affected, and the individual NMC modules may still be in some active state.

The Reset button, however, causes the Simple Sequencer to revert to its power-up state. When you
click on Reset, you will again get the message “Simple Sequencer Detected”, and the NMC modules
will also be reset. In some instances, such as if the Simple Sequencer has had a communications
fault with the NMC modules, the modules themselves may not be reset. In this case, the logic power
should be turned off and on again.

As stated earlier, stopping the program execution on the Simple Sequencer does not necessarily stop
any motion in progress. Therefore, the reset button can also be used as an stop button, causing all
modules to reset. However, it is always a good idea to have a separate emergency stop button
connected directly to the motor power supply which will terminate any motion in spite of any
communication faults.

6.0 Programming Reference

Program Structure
For the most part, programs are simply lists of commands to be executed in order. A typical
program might first initialize the NMC controllers (programs should always initialize the NMC
controllers first), load servo gain parameters, start a motion, wait for the motion to finish, and then
move on to the next motion, etc. .

The Simple Sequencer, however, offers a great deal more versatility by supporting program
branching, subroutines, and conditional branching, and counters. Most commands associated with
program flow control are Master commands, although conditional branching instructions (WaitFor
and If-GoTo) which check module-specific data will also appear as Servo, Stepper or I/O
commands. (The complete list of commands for each module type are listed in the sections below.)

The simplest branching is done with a “GoTo label” command which causes the program to jump to
the program line with the matching label. The “GoTo” command is usually used in conjunction with
conditional branching commands.

Conditional branching will cause the program to jump to a different line if some condition is met.
For example the command “If-GoTo label” (using a condition of Limit1 High) will jump to label if

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 12

Limit Switch 1 is HIGH. (Note: a “GetStatus” command should be executed just prior to an “If-
GoTo” statement to make sure the most current module status data is being tested.)

Conditional branching is also part of a “WaitFor” command. The “WaitFor” command essentially
suspends program execution until a specified condition is met. “WaitFor” commands also have a
timeout associated with them which specifies the maximum time to wait for the condition. If the
maximum time elapses, the “WaitFor” command will then jump to the specified label. This
conditional timeout feature allows your program to recover or take action should an expected
condition fail to occur. (“WaitFor” commands can also jump to themselves to create an infinite
timeout.)

The last form of conditional branching is associated with the “CountDown” command. The Simple
Sequencer has four counters that can be set to initial values using the “SetCounter” command. The
“CountDown” command will decrement a counter by 1, and then jump to the specified label if the
counter does not equal zero. This allows you to repeatedly execute a set of program lines a specific
number of times.

Another form of branching is the use of subroutines. There is no formal declaration for a subroutine,
and subroutines can appear anywhere in your program listing. The first command in the subroutine
should have a label, which is essentially the name of the subroutine. The last line of a subroutine
should be a “Return” command. To call a subroutine, the “Call label” command is used, where
label is the name of the subroutine. The after the lines of the subroutine are executed and the
“Return” command is encountered, program control will continue execution at the line after the
“Call” command.

Subroutines can be nested 10 levels deep. That is, one subroutine can call another subroutine, which
can call another, and so on, up to 10 levels deep.

One last and very powerful feature of the Simple Sequencer is a special subroutine called the
Monitor Subroutine. While the program in the middle of a “WaitFor” or “Delay” command, it is
often desirable to be able to monitor various operating conditions and take corrective action should
some error condition arise. You can do this very simply by first writing a subroutine which reads
modules’ status (“GetStatus”), checks for any error conditions (“If-GoTo”), and returns if everything
is OK. This subroutine can be given any name you want. To cause this Monitor Subroutine to be
called automatically while in the middle of a “WaitFor” or “Delay”, use the command “MonitorSub
label” at the beginning of your program. Whenever your program comes to a “WaitFor” or “Delay”
command, your monitor subroutine will automatically be called repeatedly in a loop until the
“WaitFor” condition is met or times out, or until the “Delay” time expires. (Note that monitor
subroutines themselves should not contain any “WaitFor” or “Delay” commands unless the Monitor
Subroutine feature has been disabled.)

It is possible to have multiple monitor subroutines which are active at different times. Simply insert a
new “MonitorSub label” command whenever you want to change monitor subroutines. (Use
“MonitorSub NULL” to disable the use of any Monitor Subroutine.)

Communication External Computers

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 13

The Simple Sequencer uses the RS232 port both for downloading and for communication with
external computers ore terminal devices. The “Print” command is used to transmit characters over
the RS232 port.

The Simple Sequencer does not have a receive buffer, and therefore can only receive one character
at a time. The “If-GoTo” or “WaitFor” commands are used to check if a character has been received
or if the last received character is equal to a particular character. Note that each character sent to the
Simple Sequencer will overwrite the previous character send. If any character is sent, the “Any
Key” condition will become true and remain true until a “ClearKey command is executed.

Example Programs
The Windows Simple Sequencer programming application software includes many program
examples illustrating the use of conditionals, counters, delays, “WaitFor” commands, and monitor
subroutines. Please use these as templates as you start to write your own Simple Sequencer control
programs. The following programs are included in the Examples folder:

basics.ssq - Basic motor initialization and operation.
branching.ssq - Examples using If-GoTo, WaitFor commands
counter.ssq - Example using counters and loops.
subroutines.ssq - Example of subroutines.
nesting.ssq - Example of nested subroutines.
monitorsub.ssq - Example using Monitor Subroutines.
console.ssq - Simple RS232 operator interface.
homing5.ssq - Example of homing a motor and resetting its position.

(PIC-SERVO firmware v.5 or higher)
homing4.ssq - Example of homing a motor and resetting its position.

(PIC-SERVO firmware v.3 or v.4)

6.1 Master Commands
GoTo Unconditional jump to a label
Call Call a subroutine with the specified label
Return Returns to main program after a subroutine call
If-Goto Branch on conditions particular to the Master module
StopProgram Halt program execution
Print Print characters out the RS232 port
SetTimer Set the Simple Sequencer’s internal timer
GetStatus Update the current timer, counter and RS232 key input status from the

Simple Sequencer
MonitorSub Define the label for the active Monitor Subroutine
Delay Delay program execution for a specified time
WaitFor Wait for RS232 key input.
ClearKey Clear RS232 key input
SetCounter Set the initial value for one of the four counters
CountDown Decrement one of the four counters & loop to a label if not zero
NmcInit Initialize the NMC controller network.
Reset Reset the Simple Sequencer to its power-up state
ChangeBaud Change the RS232 port baud rate

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 14

GoTo
Parameters

label Program label to jump to

GoTo unconditionally jumps to the program instruction with the label label.

Call
Parameters

label Program label of subroutine

Call unconditionally jumps to the subroutine instruction with the label label. When the program
comes to the next “Return” command, program execution will continue at the statement after the
“Call” command. One subroutines can call another subroutine, up to 10 levels deep.

Return
Parameters

none

Return is used at the end of a subroutine to return program execution at the line after the
corresponding “Call” command. A subroutine can have multiple “Return” commands depending on
the flow of your logic. You should make sure that no matter what happens, your subroutine will
eventually come to a “Return” command. If a “Return” command is encountered without a
corresponding “Call” command, the results will be unpredictable!

If-GoTo (for Master)
Parameters

label Program label to jump to
jump condition (one of the following):

Key input = specific character (from RS232 port)
Any key input (condition remains true until a ClearKey

command is executed)
Timer timeout
Counter N = count value (N = 1, 2, 3 or 4, count value = 0 to 255)
Number of modules connected = N

If-GoTo jumps to the program instruction with the label label if the selected jump condition is true.
Note: before executing this command, you should always first execute a “GetStatus” command for
the Master module to insure that you are examining the proper and current status data. If you have
several “If-GoTo” statements for the Master module, they may be proceeded by a single “GetStatus”
command. If, however, there are any other commands interspersed between the “If-GoTo”
commands, you must place a “GetStatus” command before each “If-GoTo” command. For example:

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 15

OK:
;For Master:

0 GetStatus
0 If-GoTo (key = ‘A’) SUB_A
0 If-Goto (key = ‘B’) SUB_B
0 If-GoTo (key = ‘C’) SUB_C

NOT OK:
;For Master:

0 GetStatus
0 If-GoTo (key = ‘A’) SUB_A

;Intervening Servo command
1 Stop - Motor Off
0 If-Goto (key = ‘B’) SUB_B
0 If-GoTo (key = ‘C’) SUB_C

StopProgram
Parameters

none

StopProgram halts the program execution. It is typically used only when an error condition occurs,
or when the program does not need to execute again until the system is powered up again.

Print
Parameters

chars 1-16 characters to be printed out the RS232 port
(with optional line-feed or carriage return chars.)

Print sends the specified characters out over the Z232-485 board’s RS232 port. This can be used for
communicating with external computers or for printing text to a serial terminal or serial LCD display.
Characters must be ASCII printable characters.

SetTimer
Parameters

time Timer value in units of 1/100th seconds

SetTimer sets the internal timer of the Simple Sequencer but does not delay program execution
Detecting when the timer times out can be done using the “If-GoTo” command for the Master
module. Note that any “WaitFor” or “Delay” command will reset the internal timer to a new value.

GetStatus (for Master)
Parameters

none

GetStatus loads the status data for the Master module into the Simple Sequencer’s internal status
buffer. The “If-GoTo” command then operates on current data in this status buffer. Note that each
module type has its own variant of the If-GoTo command which expects to find corresponding type
of status data in the internal status buffer. Therefore, a “GetStatus” command for a module should
always precede an “If-Goto” command for that module.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 16

MonitorSub
Parameters

label Subroutine label for the Monitor Subroutine
(“NULL” may be used for no Monitor Subroutine)

MonitorSub tells the Simple Sequencer the name of the subroutine it should use as the Monitor
Subroutine. The Monitor Subroutine will then be automatically called in a loop whenever a “Delay”
or a “WaitFor” command is executed. The Monitor Subroutine is typically used for detecting error
conditions and taking corrective action. The “MonitorSub” command can be used to change back
and forth between different Monitor Subroutines, or to define a “NULL” Monitor Subroutine. Note:
Monitor Subroutines should not contain any “Delay” or “WaitFor” statements unless the Monitor
Subroutine feature has been disabled first (using MontiorSub NULL).

Delay
Parameters

time Delay time in 1/100th seconds

The Delay command delays program execution for the specified amount of time.

WaitFor (for Master)
Parameters

condition (one of the following)
Key input = specific character (from RS232 port)
Any key input (condition remains true until a ClearKey

command is executed)
timeout Timeout value in 1/100th seconds
label Program label to jump to on timeout

WaitFor halts program execution until the specified condition is met. If the condition is not met
before the timeout period expired, the program will jump to label. To create an infinite timeout
time, you can give this command a program label and have it jump to itself on timeout. Note that the
“WaitFor” command automatically polls the corresponding module to get its current status data (no
GetStatus command is needed). If a timeout value of 0 is used, the condition will be checked once,
and the program will jump immediately to label if the condition is not true, or continue to the next
command if the condition is true.

ClearKey
Parameters

none

When a character is received from the RS232 port (via terminal key press or external computer
input), it remains in place. “ClearKey” clears the last character input from the RS232 port.
“ClearKey” should be used before waiting for character input from a terminal or external computer.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 17

SetCounter
Parameters

counter Counter number (1, 2, 3 or 4)
count Initial counter value (0 - 65535)

SetCounter sets the initial value of one of the four counters. Program loops can then be created
using the “CountDown” command. Note that when testing the counter value using the “If-GoTo”
command, only counter values between 0 and 255 can be compared.

CountDown
Parameters

counter Counter number (1, 2, 3 or 4)
label Label to jump to if counter is not equal to zero

CountDown decrements the value of a counter by 1. After decrementing, if the counter is equal to
zero, the program will jump to label. This is a convenient structure for creating program loops
which execute a fixed number of times. If you want to decrement a counter without looping
anywhere if not zero, simple give the following program line a label and jump to that label if not
zero. This makes “CountDown” have no effect on the flow of the program.

NmcInit
Parameters

none

NmcInit initializes the network of NMC controllers, determines the number of modules connected and
assigns them their addresses (starting with 1 for the module furthest from the Simple Sequencer).
The “If-GoTo” command for the Master module can be used to verify that the number of modules
detected matches that required by the program. “NmcInit” is typically used as the first line of every
program.

Reset
Parameters

none

The Reset command resets the Simple Sequencer to its power-up state. Note that this does not
necessarily reset the network of NMC controllers unless an “NmcInit” command appears at the
beginning of the program. When a “Reset” command is encountered, there will be a 1 second delay
before program execution automatically restarts.

ChangeBaud
Parameters

baud rate 1200, 2400, 9600 or 19200

ChangeBaud changes the baud rate of the RS232 port for communication with a terminal or external
computer. (The default baud rate is 19200.) Programs which contain the “ChangeBaud” command
cannot be run interactively because the Simple Sequencer programming application needs to
communicate at the default baud rate - you will only be able to run your program stand-alone

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 18

6.2 Servo Commands
Move Move in position, velocity or PWM control modes
Stop Stop a motor smoothly, abruptly, or with the servo disabled
SetGain Set the servo parameters for motion control
ResetPosition Reset the position motor position counter
StartHoming Start searching for homing switches
GetStatus Update the current motor status data
ClearStatBits Clear error status bits for a motor
If-GoTo Branch on conditions particular to a PIC-SERVO module
WaitFor Wait for a PIC-SERVO operating condition (move done, etc.)

Move
Parameters

position Goal position (+/- 2,000,000,000 counts)
(use zero if in velocity or PWM mode)

velocity Goal/Slew velocity (0 to 65,535)
(use 0 if in PWM mode)

acceleration Acceleration/Deceleration value (0 to 65,535)
(use 0 if in PWM mode)

PWM PWM output value (0 to 255)
(use 0 if in position or velocity mode)

PWM option Selects raw PWM output mode
Vel. Option Selects velocity mode option
Rev. Option Makes PWM or Velocity value negative

(only valid for PWM or velocity modes)
Move Relative Moves relative to current position

(only valid for position mode)

The Move command is used for almost all motion commands in either position, velocity or raw
PWM modes. In position mode, the position, velocity and acceleration are used to specify a
trapezoidal profile motion. In velocity mode, the velocity and acceleration are used to specify an
acceleration limited velocity command, with the reverse option used to specify a negative velocity
(position is ignored). In PWM mode, the PWM value sends a raw drive signal to the motor (0 = 0%,
255 = 100%), with the reverse option used to specify a negative drive output.

The move relative option is only valid in position mode, and it specifies that the goal position is
relative to the current position. The move relative option is only available for PIC-SERVO firmware
v.5

The motor should be stopped initially before commanding a position mode move, and the move
should be completed before issuing another position mode command. However, velocity or PWM
mode commands can be issued at any time, even if in the middle of a position mode move.

Motor motion will start immediately when the “Move” command is executed, and program execution
will proceed to the next command without waiting for the motion to complete. This enables you to

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 19

start the motion of several motors, and then use the “WaitFor” command for each motion to
complete.

Positions are in units of encoder counts, velocities in units of encoder counts per servo tick, and
accelerations in units of encoder counts per servo tick per servo tick. To increase the integer
resolution of velocities and accelerations, they are actually specified as the calculated values (in terms
of encoder counts and servo ticks) multiplied by 65,536. The default servo tick is about 1/2000th

second. Please refer to the PIC-SERVO chipset documentation for more details on specifying motion
control parameters.

Stop
Parameters

enable amplifier Option to enable/disable the amplifier
motor off option Drive signal to motor is disabled
stop abruptly option Motor stops immediately, and holds its position
stop smoothly option Motor decelerates smoothly and holds its position

Stop is used both for stopping the motor when moving and for initially turning on the PID servo.
The enable amplifier option is also used for setting an I/O bit to enable the servo amplifier. On
initialization, the “Stop” command with enable amplifier selected and stop abruptly selected will
cause the motor to start servoing to its current position.

SetGain
Parameters

Kp Proportional gain (0 to 32,767)
Kd Derivative gain (0 to 32,767)
Ki Integral gain (0 to 32,767)
IL Integration limit (0 to 32,767)
OL Output limit (0 to 255)
CL Current limit (0 to 255)
EL Position error limit (0 to 16,383)
SR Servo rate divisor (1 - 255)
DC Deadband compensation (0 - 255)

SetGain sets the operating parameters for the P.I.D. servo control. The parameters of most interest
are Kp, Kd and Ki. Kp controls the stiffness of the servo regulating how tightly the actual position
will match the goal position. Kd controls the damping of the system, making it more sluggish but
more stable. Ki controls the steady state error of the motor when its position is allowed to settle.
(Note that IL must be set to a non-zero value, typically 500 - 2000, if a non-zero value of Ki is used.)

A “SetGain” command should be used before enabling the motor servo. The “SetGain” command
can be used at any time to change servo control parameters for different operating conditions.

Selecting the best values for the servo control parameters will take a bit of experimentation, but the
default values in the Simple Sequencer programming utility should give you a good starting point.
Please refer to the PIC-SERVO chipset data sheet for a more complete description of the servo
control parameters.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 20

ResetPosition
Parameters

relative to home Option to reset relative to the home position

ResetPosition resets the motor position counter to zero. If the relative to home option is selected,
the counter will be reset to a counter value relative to the home position captured by using the
“StartHoming” command. The relative to home option is only available for PIC-SERVO v.5 firmware
or later.

StartHoming
Parameters

homing condition (one or more of the following)
Change of limit switch 1
Change of limit switch 2
Change of encoder index signal
Position error condition
Current limit condition

Autostop option Stops smoothly, abruptly, or with motor off on home

StartHoming sets the PIC-SERVO into a mode where it looks for one or more homing conditions to
become true. When one of the homing conditions is detected, the motor position is stored in an
internal register, and if specified, the motor will stop in the selected manner. Note that
“StartHoming” does not actually start any motor motion - it is typically used just before a “Move”
command which drives the motor into one of the limit switches. Very often, one homing command
using the limit switches will be followed by another homing command using the encoder index for a
more accurate position. Please examine the example programs homing4.ssq or homing5.ssq for
more details.

GetStatus (for PIC-SERVO)
Parameters

none

GetStatus loads the status data for a PIC-SERVO module into the Simple Sequencer’s internal status
buffer. The “If-GoTo” command then operates on current data in this status buffer. Note that each
module type has its own variant of the If-GoTo command which expects to find corresponding type
of status data in the internal status buffer. Therefore, a “GetStatus” command for a module should
always precede an “If-Goto” command for that module.

ClearStatBits
Parameters

none

ClearStatBits clears various “sticky” error condition bits for a PIC-SERVO module including the
position error bit. “ClearStatBits” should be used after motor servos are turned on. A position error
condition can be monitored using the “If-GoTo” command or the “WaitFor” command, and
appropriate action can be taken.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 21

If-GoTo (for PIC-SERVO)
Parameters

label program label to jump to
jump condition (one of the following)

move done / not done
power on / not on
overcurrent / no overcurrent
position error / no position error
Limit switch 1 high / low
Limit switch 2 high / low
Homing in progress / complete

If-GoTo will jump to the program label label if the selected condition is true. Note: before executing
this command, you should always first execute a “GetStatus” command for the same PIC-SERVO
module to insure that you are examining the proper status data.

WaitFor (for PIC-SERVO)
Parameters

 condition (one of the following)
move done / not done
power on / not on
overcurrent / no overcurrent
position error / no position error
Limit switch 1 high / low
Limit switch 2 high / low
Homing in progress / homing complete

timeout Timeout value in 1/100th seconds
label Program label to jump to on timeout

WaitFor halts program execution until the specified condition is met. If the condition is not met
before the timeout period expired, the program will jump to label. To create an infinite timeout
time, you can give this statement a program label and have it jump to itself on timeout. Note that the
“WaitFor” command automatically polls the corresponding module to get its current status data (no
GetStatus command is needed). If a timeout value of 0 is used, the condition will be checked once,
and the program will jump immediately to label if the condition is not true, or continue to the next
command if the condition is true.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 22

6.2 Stepper Commands
Move Move in position or velocity control modes
Stop Stop a motor smoothly, abruptly, or with the amplifier disabled
SetParam Set motion parameters
SetOutputs Set output bits and amplifier control bits
ResetPosition Reset the motor position counter
StartHoming Start searching for homing switches
GetStatus Update the current motor status data
If-GoTo Branch on conditions particular to a PIC-TEP module
WaitFor Wait for a PIC-STEP operating condition (move done, etc.)

Move
Parameters

position Goal position (+/- 2,000,000,000 counts)
(use zero if in velocity mode)

speed Goal/Slew speed (1 to 250)
accel. time Acceleration/Deceleration time (1 to 255)
Vel. Option Selects velocity mode option
Rev. Option Makes velocity value negative

(only valid for velocity mode)

The Move command is used for almost all motion commands in either position, velocity or raw
PWM modes. In position mode, the position, speed and acceleration time are used to specify a
trapezoidal profile motion. In velocity mode, the velocity and acceleration are used to specify an
acceleration limited velocity command, with the reverse option used to specify a negative velocity
(position is ignored).

The motor should be stopped initially before commanding a position mode move, and the move
should be completed before issuing another position mode command. However, velocity mode
commands can be issued at any time, even if in the middle of a position mode move.

Motor motion will start immediately when the “Move” command is executed, and program execution
will proceed to the next command without waiting for the motion to complete. This enables you to
start the motion of several motors, and then use the “WaitFor” command for each motion to
complete.

Positions are given as the number of steps. Speeds are in increments of 25 steps per second (in 1x
speed mode). The acceleration time, multiplied by 0.25 milliseconds, is the amount of time spent at
each integer speed value before accelerating to the next highest speed. Please refer to the PIC-STEP
documentation for more details on specifying motion control parameters.

Stop
Parameters

enable amplifier Option to enable/disable the amplifier
stop abruptly option Motor stops immediately, and holds its position
stop smoothly option Motor decelerates smoothly and holds its position

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 23

Stop is used both for stopping the motor when moving and for initially enabling the amplifier using
the enable amplifier option. On initialization, the “Stop” command with enable amplifier selected
and stop abruptly selected will cause the motor to start holding to its current position.

SetParam
Parameters

min. speed Minimum speed (1-250)
run current Running current (0-255)
hold current Holding Current (0-255
therm. limit Thermal limit (0-255)
ignore limits Ignore limit switches for auto-stop
ignore e-stop Ignore E-Stop input
speed modes Stepping speed options (1x, 2x, 4x or 8x)
off on e-stop Turn motor off on E-Stop or Limit switch

SetParam sets the operating parameters for the stepper controller. The minimum speed is the lowest
running speed used during acceleration or deceleration. The running and holding current dictate how
much current is supplied to the motor while moving or stationary. A value of 255 produces the
maximum current, and a value of zero produces no current. Because the PIC-STEP’s amplifier can
be overdriven by approximately 20%, the running or holding current should not be set to over 200
for more than a few seconds. The thermal limit can be used if an NTC (negative temperature
coefficient) thermistor is attached to the motor and connected to the PIC-STEP board. (Use a
thermal limit of zero if a thermistor is not used.)

The ignore limits option disables the PIC-STEP’s feature which causes the motor to stop
automatically when a limit switch is hit. The ignore e-stop option disables the feature which
automatically stops the motor when the E-Stop input is active. The off on e-stop option causes the
amplifier to be disabled if the motor is ever stopped automatically by limit switch or E-Stop inputs.

The speed modes allow you to select the operating speed of the step timer. The 1x speed is suitable
for most motors, but the higher speeds may be used when driving high resolution motors, or when
using an external microstepping driver. In the higher speed modes, the step rate is multiplied by 2x,
4x or 8x.

A “SetParam” command should be used before enabling the amplifier. The “SetParam” command
can be used at any time to change motion control parameters for different operating conditions.
Please refer to the PIC-STEP data sheet for a more complete description of the servo control
parameters.

SetOutputs
Parameters

output1 Unused output bit
half step Selects half-stepping mode (default)
slow decay Selects slow-decay mode (default)
run mode Selects running mode (default)
output5 Aux. output bit

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 24

SetOutputs is used to set output bits which will govern the operation of the amplifier. In most cases
the default settings should be used. A SetOutput command should be issued before the amplifier is
enabled. Please refer to the PIC-STEP motor control board data sheet for complete details.

ResetPosition
Parameters

none

ResetPosition resets the motor position counter to zero

StartHoming
Parameters

homing condition (one or more of the following)
Change of limit switch 1
Change of limit switch 2
Change of homing switch

Autostop option Stops smoothly or abruptly on home

StartHoming sets the PIC-STEP into a mode where it looks for one or more homing conditions to
become true. When one of the homing conditions is detected, the motor position is stored in an
internal register, and if specified, the motor will stop in the selected manner. Note that
“StartHoming” does not actually start any motor motion - it is typically used just before a “Move”
command which drives the motor into one of the limit switches.

GetStatus (for PIC-STEP)
Parameters

none

GetStatus loads the status data for a PIC-STEP module into the Simple Sequencer’s internal status
buffer. The “If-GoTo” command then operates on current data in this status buffer. Note that each
module type has its own variant of the If-GoTo command which expects to find corresponding type
of status data in the internal status buffer. Therefore, a “GetStatus” command for a module should
always precede an “If-Goto” command for that module.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 25

If-GoTo (for PIC-STEP)
Parameters

label program label to jump to
jump condition (one of the following)

moving / not moving
power on / not on
amp enabled / disabled
at speed / not at speed
homing in progress / complete
limit switch 1 high / low
limit switch 2 high / low
homing switch high / low
e-stop high / low
aux. input 1 high / low
aux. input 2 high / low

If-GoTo will jump to the program label label if the selected condition is true. Note: before executing
this command, you should always first execute a “GetStatus” command for the same PIC-STEP
module to insure that you are examining the proper status data.

WaitFor (for PIC-STEP)
Parameters

 condition (one of the following)
moving / not moving
power on / not on
amp enabled / disabled
at speed / not at speed
homing in progress / complete
limit switch 1 high / low
limit switch 2 high / low
homing switch high / low
e-stop high / low
aux. input 1 high / low
aux. input 2 high / low

timeout Timeout value in 1/100th seconds
label Program label to jump to on timeout

WaitFor halts program execution until the specified condition is met. If the condition is not met
before the timeout period expired, the program will jump to label. To create an infinite timeout
time, you can give this statement a program label and have it jump to itself on timeout. Note that the
“WaitFor” command automatically polls the corresponding module to get its current status data (no
GetStatus command is needed). If a timeout value of 0 is used, the condition will be checked once,
and the program will jump immediately to label if the condition is not true, or continue to the next
command if the condition is true.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 26

6.3 I/O Commands
MakeOutputs Specify which I/O bits are outputs
SetOutputs Set or Clear specific output bits
SetPWMs Set the two PWM output values
GetStatus Update the current PIC-I/O status data
If-GoTo Branch on conditions particular to a PIC-I/O module
WaitFor Wait for a PIC-I/O operating condition (input bit set or clear, etc.)

MakeOutputs
Parameters

 individual bit selections Selects bits to be outputs (otherwise, they are inputs)

MakeOutputs allows you to select which of the 12 I/O bits on the PIC-I/O will be used as outputs.
(On powerup, all bits are inputs). Bits can be switched back and forth between input and output for
applications requiring bi-directional I/O, but care should be taken to make sure that a bit defined as
an output will never be connected to another output or other low impedance connection - this will
damage the I/O port.

SetOutputs
Parameters

individual bit selections Selects bits to change
set/clear option Option to set or clear selected bits

SetOutputs sets or clears one or more output bits at a time. Bits not selected are unaffected. If a bit
which is an input is selected to be set or cleared, no change will be seen at the corresponding I/O pin.
However, setting or clearing an input bit prior to making it an output will guarantee its initial state
when it becomes an output.

SetPWMs
Parameters

PWM1 PWM1 output value (0 - 255)
PWM2 PWM2 output value (0 - 255)

SetPWMs sets the values for the two high current PWM output drivers. A value of 0 corresponds to
a 0% output signal, a value of 255 corresponds to a 100% output signal.

GetStatus (for PIC-I/O)
Parameters

none

GetStatus loads the status data for a PIC-I/O module into the Simple Sequencer’s internal status
buffer. The “If-GoTo” command then operates on current data in this status buffer. Note that each
module type has its own variant of the If-GoTo command which expects to find corresponding type
of status data in the internal status buffer. Therefore, a “GetStatus” command for a module should
always precede an “If-Goto” command for that module.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 27

If-GoTo (for PIC-I/O)
Parameters

label program label to jump to
jump condition (one of the following)

bits 1 - 12 set or clear

If-GoTo will jump to the program label if the selected bit is set or cleared. Both the values of input
bits and output bits can be used as a jump condition. Note: before executing this command, you
should always first execute a “GetStatus” command for the same PIC-I/O module to insure that you
are examining the proper status data.

WaitFor (for PIC-I/O)
Parameters

 condition (one of the following)
bits 1 - 12 set / clear

timeout Timeout value in 1/100th seconds
label Program label to jump to on timeout

WaitFor halts program execution until the selected bit is set or cleared. If the condition is not met
before the timeout period expired, the program will jump to label. To create an infinite timeout
time, you can give this statement a program label and have it jump to itself on timeout. Note that the
“WaitFor” command automatically polls the corresponding module to get its current status data (no
GetStatus command is needed). If a timeout value of 0 is used, the condition will be checked once,
and the program will jump immediately to label if the condition is not true, or continue to the next
command if the condition is true.

J R KERR A U T O M A T I O N ENGINEERING ¡ www.jrkerr.com 28

7.0 Other Documentation

The following additional documents will be useful for developing your application with the Simple
Sequencer. All of these documents, as well as test software, can be downloaded from the
J R KERR web site “www.jrkerr.com”:

PIC-SERVO Motor Control Board manual PSBOARD.PDF
PIC-SERVO Chipset data sheet PSDATA.PDF
PIC-STEP Motor Control Board manual PSTEP_BD.PDF
PIC-STEP Chip data sheet PICSTEP.PDF
PIC-I/O Board manual PICIO.PDF
Z232-485 Board manual Z232485.PDF

For technical support regarding NMC controller products, please send e-mail to:

techsupport@jrkerr.com

